ESTIMATIVAS DE PRODUÇÃO E VALOR NUTRITIVO DE GRAMÍNEAS DO GÊNERO Cynodon EM DIFERENTES IDADES AO CORTE COLHIDAS NO OUTONO

GEANE DIAS GONÇALVES¹, GERALDO TADEU DOS SANTOS², ULYSSES CECATO², CLÓVES CABREIRA JOBIM², JÚLIO CESAR DAMASCENO², KARLA PERON FARIA³

RESUMO: O experimento teve por objetivos estimar a produção de matéria seca (MS), relação lâmina/colmo (L/C) e a qualidade de três cultivares do gênero *Cynodon* (Coast cross, Tifton 44 e Tifton 85) colhidos com idades ao corte de 42, 63 e 84 dias no outono de 1998. Utilizou-se o delineamento experimental de parcelas subdivididas com três repetições. Para o fator idade ao corte, foi usado regressão e os modelos foram escolhidos baseados na análise de identidade. Houve aumento significativo (P<0,05), à medida que se aumentou as idades ao corte, para a produção de MS e para os teores de fibra em detergente neutro (FDN) e de fibra em detergente ácido (FDA). Porém, a relação L/C, teores de proteína bruta (PB) e de energia metabolizável (EM) estimada apresentaram efeito negativo (P<0,05) à medida que se alongou as idades ao corte.

PALAVRAS-CHAVE: coast cross, energia metabolizável, relação lâmina/colmo, Tifton 44, Tifton 85

(The authors are responsible for the quality and contents of the title, abstract and keywords)

PRODUCTION AND NUTRITIVE VALUE OF CYNODON GRASSES IN DIFFERENT AGES TOTHE CUT IN THE AUTUMN

ABSTRACT: The objectives of this experiment was to evaluate the dry matter (DM) production, leaf/stem ratio (L/S) and the quality of three cultivars of the *Cynodon* grasses (Coast-cross, Tifton 44 and Tifton 85) cut at 42, 63 and 84 days of age in the autumn of 1998. The experimental design was split-plot with three replications. The factor age of cutting was evaluated by regression and the models were chosen based on the analyses of identity. There was significant increase (P<0.05) when the cut ages were more old for the DM production for the neutral detergent fiber (NDF) and acid detergent fiber (ADF). However, the L/S ratio, crude protein (CP), metabolism energy (ME) estimated were affected negatively (P<0.05).

KEY WORDS: Coast-cross, leaf/stem ratio, metabolizable energy, Tifton 44, Tifton 85

I NTRODUÇÃO

As gramíneas do gênero *Cynodon* são capazes de produzir grandes quantidades de matéria seca, com alta relação lâmina/colmo, resultando em melhor valor nutritivo. Devido à essas características, as mesmas são recomendadas para alimentar animais com potencial para produção de carne ou leite.

O intervalo entre cortes, é um fator de manejo importante para este gênero usado também para a produção de feno, pois o mesmo contribui para determinar a produção e qualidade da forragem. Cortes a intervalos menores resultam em menores produções de matéria seca, entretanto, a alta relação lâmina/colmo determina valor nutritivo mais elevado.

Além do intervalo entre cortes, as forrageiras tropicais, necessitam de adequado manejo de solo, adequada quantidade de água, temperatura e luminosidade para o seu adequado desenvolvimento (HERRERA e HERNANDEZ, 1989), pois, existe resposta direta com as variáveis ambientais, componentes do clima, solo, além do manejo imposto (PEDREIRA et al., 1998). Segundo CÁCERES et al. (1989) os rendimentos de

¹ Zootecnista, estudante de doutorado da UEM, geanedg@yahoo.com.br

² Professores do Departamento de Zootecnia da UEM, Pesquisadores do CNPq. gtsantos@uem.br

³ Aluna do curso de Zootecnia, Bolsistas de IC/CNPq.

matéria seca são superiores na época das chuvas, porém não é evidente, se os teores de nutrientes são superiores, dada as variações existentes no valor nutritivo determinado em diferentes condições climáticas e experimentais.

Neste estudo, avaliou-se a produção de matéria seca (PMS), relação lâmina/colmo (L/C), composição química e energia metabolizável estimada de gramíneas do gênero *Cynodon* sob efeito de diferentes idades ao corte.

MATERIAL E MÉTODOS

Os cultivares foram plantados em parcelas de $5 \times 3 \text{ m}$ (15 m^2), em linhas distanciadas 0,50 m. As parcelas principais foram subdivididas para cada tratamento, sendo que as extremidades de cada subparcela (0,5 m) foram consideradas como bordaduras.

Os tratamentos foram: Três cultivares do gênero *Cynodon* (Tifton 85 (*Cynodon* spp.), Tifton 44 (*Cynodon dactylon* (L.) Pers.); Coast cross (*Cynodon dactylon* (L.) Pers.) e idades ao corte (42, 63 e 84 dias), no outono de 1998. No plantio foram aplicados 120 Kg/ha de P₂O₅ (superfosfato simples) no sulco, 80 Kg/ha de N (Uréia), juntamente com 50 Kg/ha de K₂O (cloreto de potássio). O corte da forragem foi manual a 10 cm do solo. Posteriormente, o material foi pesado no campo e retiradas subamostras de cada repetição. Após foram identificadas e levadas ao laboratório onde se realizou a separação de lâmina foliar e colmo. Em seguida, foram levados para uma estufa de circulação forçada de ar (55°C) por 72 horas. O material foi moído em peneira com crivo de 1 mm e acondicionado em frascos de vidro, para as determinações de MS, matéria orgânica (MO), proteína bruta (PB), extrato etéreo (EE) e lignina, segundo as marchas analíticas descritas por SILVA (1990). As análises de fibra em detergente neutro (FDN), fibra em detergente ácido (FDA) segundo a metodologia descrita por VAN SOEST et al. (1991). Após a determinação da composição química, N-FDN, MO, EE e lignina (dados não apresentados) das gramíneas estimou-se a EM através do modelo proposto por GIRARD e DUPUIS (1988). O delineamento experimental utilizado foi o de parcelas subdivididas com três repetições. Para o fator idade de corte foi usado regressão e os modelos foram escolhidos baseados na análise de identidade.

RESULTADOS E DISCUSSÃO

Todas as variáveis estudadas se adequaram ao modelo quadrático e linear de regressão (Tabela 1).

Não houve diferença (P>0,05) entre os cultivares para a produção de MS (t/ha). No entanto, houve aumento (P<0,05) progressivo, à medida que se aumentou a idade ao corte, apresentando menor valor os 42 dias. Da mesma forma ALVIM et al. (1998), registrou aumento na produção de MS do cultivar Coast-cross com o aumento no intervalo entre cortes. Para a relação L/C houve diferença (P<0,05) entre os cultivares e idade ao corte, sendo que, o Tifton 85 apresentou-se superior aos demais com valores na ordem de 3,70, 3,06 e 2,42 aos 42, 63 e 84 dias de idade ao corte. Esse resultado mostra a grande capacidade desse cultivar em produzir massa foliar.

Não ocorreu diferença (P>0,05) entre os cultivares para os teores de PB, porém, houve decréscimo significativo (P<0,05) com o avanço na idade ao corte de 14,80 para 8,73%. Já BELESKY et al. (1991) registraram decréscimo de 11 para 9% nos teores de PB do capim bermuda, à medida que se alongou a idade ao corte de 2 para 6 semanas. Embora os valores de energia metabolizável, apresentaram comportamento similar em função do avanço na idade ao corte, ocorreu diferença (P<0,05) entre os cultivares (Tabela 1).

Os teores de FDN e FDA das plantas aumentaram (P<0,05) à medida que se alongou a idade ao corte de 42 para 84 dias. Porém, houve diferença (P<0,05) entre os cultivares apenas para os teores de FDN. Segundo OMALIKO (1980) a maior idade ao corte em gramíneas tropicais causa aumentos na proporção de colmos e, consequentemente aumento de tecido estrutural na matéria seca.

CONCLUSÕES

O aumento da idade de corte promoveu incremento na produção de MS e aumentos nos teores de FDN e FDA.

A relação L/C diminuiu com o aumento na idade ao corte de 42 para 84 dias, determinando redução no teor protéico e na EM.

O comportamento em produção e valor nutritivo dos três cultivares avaliados foi semelhante. Porém, houve algumas diferenças nos constituintes químicos.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALVIM, M.J., XAVIER, D.F., BOTREL, M.A. et al. 1998 Resposta do coast-cross (*Cynodon dactilon* (L.) Pers.) a diferentes doses de nitrogênio e intervalos de cortes. Rev. Bras. Zootec., 27(5): 833-840.
- BELESKY, D.P., PERRY, H.D., WINDHAM, W.R. et al. 1991. Productivity and quality of bermudagrass in a coll temperate environment. Agron. J., 83(5): 810-813.
- CÁCERES, O., SANTANA, H., RIVELO, L. 1989. Influencia de la epoca sobre el valor nureitivo y rendimiento de nutrimentos de tres gramineas forrajeras. Pastos y Forrajes, 12(7): 71-76.
- GIRARD, V., DUPUIS, G. 1988. Effect of strutural and chemical factores of forages on potentially digestible fiber, intake, and true digestibility by ruminats. Can. J. Anim. Sci., 68: 178-181.
- HERRERA, R.S., HERNANDEZ, Y. 1989. Efecto de la edad de rebrote en algunos indicadores de la calidad de la bermuda cruzada-1. III. Porcentaje de hojas y rendimientos de materia seca y proteina bruta. Pastos y Forrajes, 12(77): 77-81.
- OMALIKO, C.P.E. 1980. Influence of initial cutting date and cutting frequency on yield and quality of star, elephant and guinea grasses. Grass. Forage Sci., 35(1): 139-145.
- PEDREIRA, C.G.S., NUSSIO, L.G., SILVA, S.C. Condições edafo-climáticas para produção de *Cynodon* spp. In: PEIXOTO, A.M., MOURA, J.C., FARIA, V.P. Anais... Piracicaba: FEALQ, p. 85-114, 1998.
- SILVA, D.J. Análise de alimentos (métodos químicos e biológicos) 2 ed. Viçosa. UFV. Imp. Univ. 165p. 1990.
- VAN SOEST, P.J., ROBERTSON, J.B., LEWIS, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10): 3583-3597.

TABELA 1 - Equações ajustadas da produção de matéria seca (MS), relação lâmina/colmo, composição química e energia metabolizável, de gramíneas do gênero *Cynodon* em função da idade ao corte

Variável		
Produção de matéria seca (t/ha)		
	Gramíneas	
Coast-cross	Tifton 44	Tifton 85
$\hat{Y} = 1374,43 + 20,1263(D - \overline{D})$	$\hat{Y} = 1374,43 + 20,1263 (D - \overline{D})$	$\hat{Y} = 137443 + 201263(D - \overline{D})$
$r^2 = 39$	$r^2 = 39$	$r^2 = 39$
	Polocão lâmino/colmo	
Ŷ 0.70 0.012(D D)	Relação lâmina/colmo	Ŷ 2.05 0.020(D D)
$\hat{Y} = 0.70 - 0.013(D - \overline{D})$	$\hat{Y} = 1.31 - 0.010 \ (D - \overline{D})$	
$r^2 = 73$	$r^2 = 76$	$r^2 = 67$
Proteína bruta (%MS)		
$\hat{Y} = 11,77 - 0,14(D - \overline{D})$		$\hat{Y} = 11,77 - 0,14(D - \overline{D})$
$r^2 = 88$	$r^2 = 88$	$r^2 = 88$
1 – 60	1 = 66	1 = 00
Fibra em detergente neutro (%MS)		
$\hat{Y} = 72 + 0.06(D - \overline{D}) + 0.0006D - \overline{D})^2$	$\hat{Y} = 72 + 0.13(D - \overline{D}) + 0.004(D - \overline{D})^2$	
$r^2 = 83$	$r^2 = 88$	$r^2 = 89$
Fibra em detergente ácido		
$\hat{Y} = 35,30 + 0,088(D - \overline{D})$	$\hat{Y} = 35,67 + 0,070 (D - \overline{D})$	$\hat{Y} = 35,60 + 0,052(D - \overline{D})$
$r^2 = 65$	$r^2 = 93$	$r^2 = 75$
Energia metabolizável		
	(Mcal/kg de MS)	
$\hat{Y} = 2,43 - 0,0012(D - \overline{D})$	$\hat{Y} = 2,62 - 0,0059 (D - \overline{D})$	$\hat{Y} = 2,45 - 0,0062 (D - \overline{D})$
$r^2 = 13$	$r^2 = 78$	$r^2 = 67$

D = Idade ao corte, \overline{D} = Idade ao corte médio